Flight Control Systems That Learn

Silvia Ferrari Advisor: Prof. Robert F. Stengel Princeton University

FAA/NASA Joint University Program on Air Transportation, NASA Ames Research Center, Moffett Field, CA

April 4-5, 2002

A Multiphase Learning Approach for Automated Reasoning

On-line

Control Routing

Identification Scheduling

Planning ...

Supervised Learning:

Reinforcement Learning:

The same performance metric is optimized during both phases!

Introduction

 Stringent operational requirements introduce Complexity
 Nonlinearity

Uncertainty

• Classical/neural synthesis of control systems

A-priori knowledge

Adaptive neural networks

Dual heuristic programming adaptive critic architecture:

Action network takes immediate control action I

Neural Network Control of Aircraft

- Full envelope control
- Multiphase learning

Initialization: match linear controllers exactly off-line

On-line learning: full-scale simulations, testing, or operation

- On-line learning improves performance w.r.t. linear controllers:
 Differences between actual and assumed models
 Nonlinear effects not captured in linearizations
- Potential applications:

Incorporate pilot's knowledge into controller *a priori*Uninhabited air vehicles control
Aerobatic flight control

Table of Contents

- Aircraft control design approach
- Initialization phase

Linear control design

Preliminary results

On-line learning phase

Adaptive critic design

Bounded control inputs

Final results

Conclusions

Design Approach

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t)]$$

Linear Control

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$$

$$\Delta \mathbf{u} = -\mathbf{C}\Delta \mathbf{x}$$

Initialization

Linear Control Design

Linearizations:

$$\dot{\mathbf{x}}(t) = \mathbf{f}[\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}(t)]$$

$$\downarrow \mathcal{J}$$

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$$

$$\downarrow \mathcal{J}$$

$$\begin{cases}
\Delta \dot{\mathbf{x}}_{L}(t) = \mathbf{F}_{L} \Delta \mathbf{x}_{L}(t) + \mathbf{G}_{L} \Delta \mathbf{u}_{L}(t) \\
\Delta \dot{\mathbf{x}}_{LD}(t) = \mathbf{F}_{LD} \Delta \mathbf{x}_{LD}(t) + \mathbf{G}_{LD} \Delta \mathbf{u}_{LD}(t)
\end{cases}$$

Linear control design:

- Longitudinal
- Lateral-directional

Flight envelope and design points:

Proportional-Integral Linear Controller

Closed-loop stability: $\mathbf{x} = \mathbf{x} - \mathbf{x}_c \rightarrow \mathbf{0}; \quad \widetilde{\mathbf{u}}, \ \widetilde{\mathbf{y}} \rightarrow 0$

$$J = \lim_{t_f \to \infty} \frac{1}{2} \int_{0}^{t_f} \left[\mathbf{x}_a^T(\tau) \mathbf{Q} \mathbf{x}_a(\tau) + 2 \mathbf{x}_a^T(\tau) \mathbf{M} \widetilde{\mathbf{u}}(\tau) + \widetilde{\mathbf{u}}^T(\tau) \mathbf{R} \widetilde{\mathbf{u}}(\tau) \right] d\tau, \quad \mathbf{x}_a = \left[\widetilde{\mathbf{x}}^T \ \xi^T \right]^T$$

Proportional-Integral Neural Network Controller

: Algebraic Initialization, : On-line Training.

Comparison of Initialized Neural Network and Linear Controllers

Proportional-Integral Neural Network Controller On-line Adaptation

$$V(t) = -\lim_{t_f \to \infty} \frac{1}{2} \int_{t_f}^{t} \left[\mathbf{x}_a^T(\tau) \mathbf{Q} \mathbf{x}_a(\tau) + 2\mathbf{x}_a^T(\tau) \mathbf{M} \widetilde{\mathbf{u}}(\tau) + \widetilde{\mathbf{u}}^T(\tau) \mathbf{R} \widetilde{\mathbf{u}}(\tau) \right] d\tau,$$

On-line Adaptation with Bounded Control Inputs

Introduce exponential cost in the control-weighting matrix \mathbf{R} :

• For bounded throttle, $0 \le \delta T(\%) \le 1$,

$$\mathbf{R}(1, 1) = e^{10|2\delta T - 1|}$$

■ For bounded stabilator, aileron, and rudder deflections, e.g., $-0.6 \le \delta S(\text{rad}) \le 0.6$,

$$\mathbf{R}(2, 2) = e^{15|\delta S|}$$

Adaptive Critic Implementation: Action Network On-line Training

Train action network, at time t, holding the critic parameters fixed

Adaptive Critic Implementation: Critic Network On-line Training

Train critic network, at time t, holding the action parameters fixed

Action/Critic Network On-line Learning, at Time t

The (action/critic) network must meet its target,

$$\min_{\mathbf{w}} E \equiv \min_{\mathbf{w}} |\mathbf{\varepsilon}|^2$$

$$\begin{cases}
E \equiv \text{Network performance} \\
\varepsilon \equiv \text{Network error} \\
w \equiv \text{Network weights}
\end{cases}$$

Modified Resilient Backpropagation (**RProp**) minimizes E w.r.t. w:

Comparison of Adaptive Critic and Initialized Neural Control: Aircraft Response During a Coupled Maneuver

Comparison of Adaptive Critic and Initialized Neural Control: Aircraft Response During a Large-Angle Maneuver

Comparison of Adaptive Critic and Initialized Neural Control During a Large-Angle Maneuver

Control History, $(H_0, V_0) = (7 \text{ Km}, 160 \text{ m/s})$

- - - Initialized Neural Control- Adaptive Critic Neural Control

Initialized Neural Controller Performance in the Presence of Control Failures

Control Failures:

•
$$\delta T = 0, 0 \le t \le 15 \text{ sec}$$

•
$$\delta S = 0, 5 \le t \le 10 \text{ sec}$$

•
$$\delta R = 0$$
, $5 \le t \le 10$ sec

•
$$\delta R = -34^{\circ}, t \le 5 \text{ or } t \ge 10 \text{ sec}$$

Comparison of Adaptive Critic and Initialized Neural Control: Aircraft Response in the Presence of Control Failures

Aircraft Response after t = 10 sec, $(H_0, V_0) = (3 \text{ Km}, 100 \text{ m/s})$

Adaptive Critic Neural Control During a Previously-Encountered Maneuver

Adaptive Critic
Neural Control
(1st adaptation):
--Adaptive Critic
Neural Control
(2nd adaptation):
--Command
Input:

Summary of Results

Learning control system:

- Improves global performance
- Preserves prior knowledge
- Suspends and resumes adaptation, as appropriate

Achievements:

- Systematic approach for designing adaptive control systems
- Framework for investigating neural approximation properties
- Innovative (off-line and on-line) training techniques

Other Potential Applications for Adaptive Neural Control:

Air-traffic management, reconfiguring hardware (raw chips), process control, criminal profiling, image processing, ...

Flight Control Systems That Learn

Silvia Ferrari Advisor: Prof. Robert F. Stengel Princeton University

FAA/NASA Joint University Program on Air Transportation, NASA Ames Research Center, Moffett Field, CA

April 4-5, 2002